Time’s Up!
Dating the Minoan eruption of Santorini

Acts of the Minoan Eruption Chronology Workshop,
Sandbjerg November 2007
initiated by
Jan Heinemeier & Walter L. Friedrich

Edited by
David A. Warburton

Monographs of the Danish Institute at Athens
Volume 10
Contents

9 Scientific & technical organizing committee

10 List of contributors

13 Editor's preface
   David A. Warburton

15 Bibliography

53 General introduction
   David A. Warburton

56 The Minoan eruption of Santorini radiocarbon dated to 1613 ± 13 BC
   Walter L. Friedrich & Jan Heinemeier

65 Part I: Evidence, geology, archaeology & chronology

67 Volcanic chronology of Santorini
   Alexander R. McBirney

73 The eruption within the debate about the date
   Floyd W. McCoy

91 The effects of the Minoan eruption
   Walter L. Friedrich & Nikolaos Sigalas

101 Evidence from Pseira for the Santorini eruption
   Philip P. Betancourt

107 The impact of the Minoan eruption of Santorini on Mochlos
   Jeffrey S. Soles

117 Papadiokambos: new evidence for the impact of the Theran eruption
   Thomas M. Brogan & Chrysa Sofianou

125 The basis for the Egyptian dates
   Rolf Krauss & David A. Warburton

145 How uncertain is Mesopotamian chronology?
   Hermann Hunger
Thera, Hatshepsut, and the Keftiu: crisis and response

J. Alexander MacGillivray

The Thera eruption and Egypt: pumice, texts and chronology

Karen Polinger Foster, Johannes H. Sterba, Georg Steinhauser & Max Bichler

The date of the Late Bronze Age eruption of Santorini

Peter Warren

Aegean-Egyptian synchronisms and radiocarbon chronology

Felix Höflmayer

The state of the debate about the date of the Theran eruption

Malcolm H. Wiener

Beyond the Santorini eruption

Sturt W. Manning

The dating of the earlier Late Minoan IA period

Sturt W. Manning & Christopher Bronk Ramsey

Chronological conundrums: Cypriot and Levantine imports from Thera

Robert Merrillees

The chronology of Tell el-Ajjul, Gaza

Peter M. Fischer

An update on the chronological value of Minoica in the Levant and Cyprus

Annette Højen Sørensen

14C and 10Be around 1650 cal BC

Raimund Muscheler

The Minoan eruption of Santorini radiocarbon dated

Jan Heinemeier, Walter L. Friedrich, Bernd Kromer & Christopher Bronk Ramsey

Epilogue

David A. Warburton
The state of the debate about the date of the Theran eruption

Malcolm H. Wiener

The primary aim of this paper is to present a critical review of the proposed scientific evidence for the date of the Theran eruption. A brief preliminary summary of the textual and archaeological evidence for the date is in order, however, to establish the cogent nature of the case which any purportedly contradictory scientific evidence must overcome.

First, Egyptian dates based on a rich interweaving of texts, both public and private, and supplemented by interconnections with securely dated rulers in the Near East and astronomical observations, are solid back to the beginning of the New Kingdom between 1540 and 1525 BC, and cannot move by more than two decades through the preceding century of the Hyksos Period.1

Second, chronological interconnections with Thera and the Aegean world have been established through multiple finds in good stratigraphic contexts in Egypt, the Near East, Cyprus, and the Aegean. For example, it is hard to imagine that a Cypriot White Slip I bowl from the Volcanic Destruction Level at Thera, a type nowhere attested earlier than the beginning of the New Kingdom in Egypt or at most no earlier than about 1560 BC, could have arrived in Thera prior to c. 1613 BC. The bowl shows evidence of use and repair in antiquity, and according to the leading specialists is not stylistically early in the sequence of White Slip I pottery.2 Under the circumstances, about 1525 BC seems the earliest reasonable date, even if the bowl was one of the first such ever made and traveled quickly. The chronological horizon of White Slip I seems well-fixed, moreover by the fact that earlier Cypriot wares appear in the established order in earlier strata at Tell el-Dab’a, and by the thousands of sherds of Cypriot pottery, including some White Slip I and its chronological predecessors, Proto White Slip and White Painted III, IV, and V, found in various contexts in the Near East, for example at Tell el-Ajul and at Ashkelon,3 in Rhodes and in Cyprus in contexts including Minoan LM IA pottery.4 At Palaepaphos-Teratsoudhia on the western coast of Cyprus one tomb contained not only sherds of White Slip I and LM IA pottery (the same association seen at Thera), but also a serpentine vessel bearing the nomen and prenomen of Ahmose, the first pharaoh of Dyn. XVIII in Egypt, who becomes pharaoh on the death of his brother Kamose between c. 1540 and 1525 BC.5 The Aegean Long Chronology with a date for the Theran eruption of 1613 ±13 BC requires LM IA to end c. 1580 BC at the latest, which in turn would require either that the LM IA vases placed in the tomb were all heirlooms and that the White Slip I vases were of an earlier date than White Slip I vases known from anywhere else, or that the tomb had been reopened to deposit the Egyptian serpentine vessel about 50 years after the deposit of the LM IA vessels. At Tripanda in Rhodes, Cypriot White Slip ware appears only above the tephra layer of the Theran eruption.6 While any individual object may be an heirloom or of uncertain context, large numbers of potsherds and other objects are surely unlikely to arrive in foreign contexts regularly after 80 years’ delay, or indeed 50 years’ delay. Archaeological arguments seeking to explain such a delay by drawing a line

---

1 Wiener 2006b.  
2 Merrillees 2001, 90.  
3 Bergoffen 2001; Fischer 2003, 265.  
4 Eriksson 2001b.  
5 Eriksson 2001b, 63; Karageorghis 1990, 95, fig. 1, pl. XXI.1.  
6 T. Marketou (pers. comm. 1 April 2007).
of demarcation separating Cyprus into western and eastern zones trading with different regions, otherwise unattested and matching no natural features, are rightly dismissed as wholly unconvincing by most archaeologists. In any event, the chronological argument based on Egyptian interconnections does not by any means rest on Cypriot pottery, but includes Egyptian objects of well-established date found on Thera, Crete, and in the Mycenaean Shaft Graves at times closely related to the Theran eruption, and Aegean objects plus depictions of Aegean objects found in Egypt in contexts consistent with the standard chronology. The Theran evidence includes an Egyptian stone vessel found in the excavations of the Theran Volcanic Destruction Level by Christos Doumas published by Peter Warren and described by Manfred Bietak as no earlier in manufacture than the beginning of the New Kingdom between c. 1540 and 1525 BC, based on finds of similar stone vases to date. Late Minoan I rhyta vase shapes are copied in local Egyptian clay or faience beginning in the New Kingdom. If Late Minoan IA ended fifty years before the start of the New Kingdom as required by a 17th–early 16th century BC date for the eruption, then Egyptians were copying heirlooms which survived the Hyksos expulsion from Egypt, even though no such objects have ever been found at Hyksos sites.

We now move to the scientific claims for dating the eruption. An article in Science by Friedrich et al. asserts that there is evidence from ice cores and tree rings for a date 75–100 years earlier than archaeological dating for the Theran eruption. There is in fact no such sustainable evidence. As to ice core dating, first the claim of significant similarity in rare-earth element composition between microscopic glass shards in a Greenland ice core lamination of c. 1642 BC was challenged as not yielding convincing results. Second, investigation disclosed that major differences in the bulk components of the Greenland ice particles and the Theran tephra made a common source unlikely. Finally, it was shown that the published chemical composition of the ice core indication was closer to the composition of an eruption of Aniakchak, a volcano in the Aleutian Chain which on independent evidence is believed to have erupted in the 17th century BC, than to Thera. Other volcanoes, including the Hayes Volcano in Alaska, Mt. St. Helens in the Northwestern United States, and Avellino in Italy, also experienced 17th century BC eruptions. Moreover, an analysis by Peter Fischer using state-of-the-art SIMS equipment at the Nordsim facility in Stockholm could find no trace of a volcanic eruption in the ice lamination of the succeeding year, notwithstanding the expectation that some such particles would have remained in the atmosphere. In any event, there seems no basis for an assumption that every northern Hemisphere eruption must leave an acid signal in every square meter of the Greenland ice. In sum, there is no sustainable ice core evidence for the Theran eruption.

There is at present no direct dendrochronological evidence for dating the Theran eruption either. The key sequence of logs from Porsuk near the Cilician Gates, 800 km due east of Thera, shows a growth spurt of indeterminate cause around 1642 BC, an impossibly early date for the Theran eruption on textual/archaeological grounds (and significantly earlier than the date proposed by the recent radiocarbon analysis of a Theran olive branch covered in tephra discussed below). The Porsuk tree-ring sequence largely ends in 1573 BC and hence is not relevant to the discussion of any later date for the eruption, for example a date compatible with the textual/archaeological evidence such as 1525 BC. Apparent correlations of ice core and tree-ring events in the same year or two in a number of lo-

8 Further elaboration of the archaeological evidence may be found in Peter Warren, this volume.
10 Friedrich et al. 2006.
11 Hammer et al. 1987; 2001; 2003, 93.
16 Wiener 2003a; Robock 2000 and pers. comm.; Robock & Frey 1995. The recent paper by Vinther et al. 2008, contends, however, that the analyses of chemical composition by Pearce and others, while cogent, do not completely rule out the possibility that the c. 1642 BC event in the Greenland ice cores was caused by the Theran eruption; contra Denton & Pearce, 2008.
ocations around the globe, probably the results of major eruptions, occur at several dates, including 1571-70 BC and 1525-24 BC, but the locations of the putative eruptions responsible for the suspected climate-forcing events are presently unknown.

We turn now to the radiocarbon evidence for dating the Theran eruption, focusing first on problem areas of radiocarbon dating in general and then specifically on proposed dates for the Theran eruption. The general challenges of radiocarbon dating include 1) the effect of seasonal variation reflecting differences in growing seasons between plants and trees in various areas, sometimes exacerbated by periods of cold climate; 2) the relatively small number of measurements of the tree segments of known date which compose the calibration curve, some from before the advent of modern high-precision laboratories, including measurements which have subsequently been acknowledged to be erroneous; 3) questions arising from the assumptions underlying the claimed precision of results of the Bayesian or quasi-Bayesian probability analyses connecting sample measurements to the calibration curve; and 4) possible carbon reservoir contamination of samples by the presence of $^{14}$C-deficient carbon from a) upwelling of seawater affecting the $^{14}$C content of the atmosphere, b) groundwater, soil concentrations, or limestone formations, or c) volcanic vents.

We begin with the measurement of $^{14}$C in laboratories. While measurements have improved greatly over the course of a generation, outliers and inconsistent measurements in samples divided between two or more high-precision labs still occur. Manning et al. in an article published in 2006 report that “[o]verall, comparing the Oxford versus Vienna data on the same samples, we find an average offset of -11.4 $^{14}$C years. The standard deviation is, however, rather larger than the stated errors on the data would imply at 68.1 [uncalibrated radiocarbon years]. This indicates that there is an unknown error component of 54.5 $^{14}$C years”. Moreover, “the possible likely typical unknown error component of around 14 $^{14}$C years found between Oxford and Vienna is about as good as can be expected in such an inter-laboratory comparisons even between the high-precision laboratories”. The recently published VERA laboratory in Vienna determinations for the Thutmoside period in Egypt, based on seeds found at Tell el-Dab’a, differ markedly from all other radiocarbon determinations for this period, as well as from solid historical dates for the period. The cause of the anomaly is unknown.

Comparison of measurements of short-lived samples such as seeds which may have a lifespan measured in weeks to the decadal or bi-decadal measurements of the trees which constitute the calibration curve necessarily confronts the fact that the intra-year difference in radiocarbon-age measurements between the summer high and winter low varies significantly, generally between 8 and 32 radiocarbon years, but with occasional higher variations. (The dilution of the atmospheric concentrations of $^{14}$C and $^{13}$C by large amounts of fossil fuel containing CO$_2$ largely lacking $^{14}$C and $^{13}$C in the past two centuries may limit the relevance of the proposed summer high versus winter low annual range with respect to premodern periods. Keenan suggests that 32 years may be a significant underestimate of the intra-year range.) The growing season of Egyptian seeds is of course far different from that of the oaks in northern Europe on which the calibration curve is mostly based.

Calibration-curve determinations present significant further problems. The decadal measurements of the calibration curve necessarily mask to some degree both intra-year as well as inter-year variability, particularly since years of greater growth producing large rings will be always overrepresented in the decadal sample, and years of low growth producing narrow rings underrepresented. Anatolian trees give quite different radiocarbon dates from European trees of the same known dendrochronological date for the period 800–750 BC. A change in solar radiation at this time with a consequent cold period latening growing seasons in Anatolia

---

17 Wiener 2006a, 320–3; Salzer & Hughes 2007.
18 Manning 2007, 108.
19 Manning et al. 2006b, 5.
20 Wiener 2006b; Marcus et al. n.d.
has been proposed as the cause by Manning et al. The inconsistent effect of the 11- and 88-year sun-spot cycles also pose problems.

The problematic nature of the 1998 calibration curve was recognized by the international committee that produced the INTCAL04 calibration curve. The committee accordingly recommended that the Gaussian bell-curve-derived estimates of measurement accuracies should be multiplied at the one-sigma range by 1.3 for the Seattle measurements and 1.76 for the Belfast measurements on German oak. The INTCAL04 Committee further decided to smooth the calibration curve by incorporating information from 100 surrounding data points for each decadal determination, in order to limit the impact of any single wayward decadal measurement. The number of years incorporated in this manner is inversely correlated to the density of information for any given decade. The calibration curve – really a probability band rather than a curve – is not a fixed and immutable reference point, but rather a fallible human construct. The former Deputy Director of the Oxford Research Laboratory for Archaeology and the History of Art noted that “conversion to calendar date is confusing because of the irregular form of the calibration curve; the difficulty of translating error limits from one time-scale to the other is particularly acute and here we are inevitably in the hands of the statisticians”.

A recent experiment in Japan, where 5-year segments of a piece of cypress wood of known dendrochronological last-ring date of AD 389 were submitted for radiocarbon dating, provided a calibrated date range of 86% probability which was erroneous by a minimum of 72 years. This result clearly illustrates the potential for confusion on the part of most consumers of radiocarbon dates stemming from the use of the term “probability” in this manner, with no disclosure of the underlying assumptions, particularly the assumptions concerning the accuracy and adequacy of the calibration curve measurements and the absence of climate factors and of 14C-deficient carbon, discussed below. (The Japanese study also sounded a note of caution as to whether the utilization of a calibration curve largely based on German oaks was appropriate for the calibration of measurements of material from the islands of Japan also, a question relevant to the discussion below.) The warning of statistician Marian Scott is apposite: “Bayesian analysis is not a ‘cure-all’; it has costs, not least the specification of the prior. This is not easy and even in those situations where we think we are not making any strong assumptions, there may be hidden complications”. The utilization of 14C determinations from different sites (and hence subject to different circumstances with respect to 14C reservoir effects of various types, as well as different seasonal effects) as if they were repeated measurements from one horizon at one site is clearly problematic. Voutsaki et al. put the matter bluntly: “despite widespread practice, this procedure is not really statistically valid”. All such programs narrow the error bands depending on the number of measurements, a procedure sometimes justified with respect to first-order measurement uncertainty, but irrelevant and hence inadequate with respect to errors in the calibration curve, climate-magnified seasonal/regional variation, or local/regional variation stemming from the presence of 14C-deficient carbon, whether from seawater or terrestrial sinks or other sources of 14C-deficient carbon, including volcanic sources. Two-sigma error bands of ±15 or less with respect to calibrated dates for the second millennium BC rest on highly optimistic assumptions concerning the accuracy and precision of the calibration curve, the near perfection of the algorithms connecting sample measurements to the calibration curve, the absence of seasonal and climate-induced variation, and the non-existence of 14C-deficient carbon, from any source, in the samples tested. (The question of the potential presence of 14C-deficient carbon is of particular significance in relation to measurements from Thera. Each 1% of such carbon in a sample moves the apparent date 80 years earlier than the true date.)

21 Manning 1995, 128.
24 Aitken 1990, 93.
25 Imamura et al. 2007.
26 Scott 2000, 181. Discussions of or relevant to the application of Bayesian statistics to radiocarbon dates may be found in Buck et al. 1996; Christen 1994; Christen and Buck 1998; Nicholls & Jones 2001; and Zeidler, Buck, & Litton 1998.
One regional variation is already well established and accepted by the radiocarbon community. Recently a separate Southern Hemisphere calibration curve was published to reflect the fact that radiocarbon measurements from decadal tree segments of the same known date in the Northern and Southern Hemispheres differ by a mean difference of 41 ±14 years over the past 900 years, with a variation between 8 and 80 years. The underlying cause or causes of the differences between Northern and Southern Hemisphere 14C measurements of samples of the same absolute date and their relative significance are unclear. (Wind belts known as the Intertropical Convergence Zone separate the two hemispheres and prevent atmospheric mixing.) More of the Southern than the Northern Hemisphere is covered by water, and water contains 14C-deficient carbon which, when released into the atmosphere through periodic upwelling of deep-sea water and absorbed by trees and plants, makes calendar ages seem older than in fact they are. Such regional effects are not limited to the Southern Hemisphere, however. For example, similar regional offsets are proposed for Japan, either generally or for certain periods. Stuiver and Braziunas describe how irregular water circulation oscillations of 14C-deficient water, some with a periodicity of 40–50 years, operate globally, “regionally distinct from ENSO but influencing Δ14C in a similar manner” to these El Niño-Southern Oscillation episodes. (They also consider whether a combination of low sunspot activity and resulting cold climate could cause a significant decrease in radiocarbon in certain periods in particular places.)

Similar periodic upwelling of old carbon has been proposed for the Aegean, whether caused by the exchange of new cold deep water created annually in the northern Adriatic pushing up older water in the central Mediterranean, which then degasses as it depressurizes, or by the exchange of water with the Black Sea, rich in old carbon, or in the form of periodic release of old carbon from the underwater vents discussed below. Reservoir effects have been reported for the Mediterranean including the Aegean in the early 20th century AD, but the evidence is scanty and nothing is presently known about earlier times. Rapp and Hill note that “upwelling of deep water occurs near many coastlines” and that it “is affected by the shape of the coastline and the bottom topography, local climate, and wind and current patterns.” (Such upwelling is not a general phenomenon in the Eastern Mediterranean at present, however.)

Let us consider the position of the island of Thera in this light. Unlike the German oaks and central Anatolian juniper and pine trees which form the basis of the radiocarbon calibration curve, the trees and crops of Thera are surrounded by sources of 14C-deficient carbon. Thera in particular and the Aegean in general are notorious for vents containing 14C-deficient carbon. Geothermal areas are known in the northern and central Aegean as well as along the Hellenic Volcanic Arc. A recent occurrence near the island of Melos was described as follows: “Every fumarole on the shore blew out. And the sea boiled as the gas came out with such force. Stunned fish came to the surface”.

Another major source of old carbon exists 5 km north-northeast of Thera. The traveler Bent reported that in the 1880s a 10-days’ stay in the waters off the Burnt Islands of Thera would clean the bottoms of ships without any effort on the part of the sailors. One study showed that while the present levels of soil carbon dioxide (CO2) on Thera are not uniformly high, 24 separate locations out the 76 yielded high levels, including one location close to Akrotiri. The most recent detailed study by McCoy and Heiken, published in 2000, reports that “manifestations of volcanism and concomitant hazards remain today with fumaroles, seismic activity, hydrothermal springs, and higher concentrations of helium and CO2 in soils” and that “high concentrations of helium and CO2 are present in soils on central Thera”.

---

28 Imamura et al. 2007; Ozaki et al. 2007.
29 Stuiver & Braziunas 1993.
31 Keenan 2002.
33 Rapp & Hill 2006, 153.
34 P.R. Dando, as quoted in Pain 1999, 41.
35 Bent 1965, 118.
37 McCoy & Heiken 2000a, 43.
38 McCoy & Heiken 2000a, 48.
With respect to the potential presence of $^{14}$C-deficient carbon, a test by M. Bruns et al. in 1980 is worth noting. Their study of current short-lived plant material from Thera whose true age was about one year provided radiocarbon ages of 1390 and 1030 bp (years before present). The plants were located near a vent of such old carbon, which the plants had absorbed. The pronounced old-carbon effect of this particular vent, a point source as distinguished from a line (volcanic fault) source or a distributed source, disappeared beyond a distance of 250 m.\(^39\) Strangely, some of the advocates of an Aegean Long Chronology have turned this one example into a universal rule, claiming that vents do not affect radiocarbon determinations except at close distances, and only by gross amounts. The literature shows just the opposite, with volcanic carbon vents in various areas in Italy affecting radiocarbon readings over many kilometres. A number of Italian studies have shown that historically securely dated deposits have produced anomalously high $^{14}$C dates.\(^40\) Further, agricultural activity can release $^{14}$C-deficient carbon, as can groundwater flowing through ancient rocks and used for irrigation. N.A. Mörner and G. Etiope note that in the “Tethyan belt [which includes the Mediterranean region], high $\mathrm{CO}_2$ fluxes are related to important crustal formations of … carbonate rocks [causing] high level of $\mathrm{CO}_2$ concentration in ground and groundwater”.\(^41\) The great earthquake at the beginning of the Late Cycladic I period, 50 to 100 years before the Late Cycladic I–Late Minoan IA eruption, released quantities of magma through fissures, according to McCoy and Heiken.\(^42\) The precursor phases of the final eruption would of course have released magma; and accordingly, seeds collected and stored during this period have an increased potential for a reservoir effect. We have no information whatever on the extent of magma release, if any, at any point in the past, let alone from the Theran eruption horizon.

The presence of $^{14}$C-depleted carbon in the soil and groundwater of Thera (apart from the potential atmospheric presence due to upwelling of the surrounding deep-sea water) raises the question of the degree of carbon intake by trees and plants via roots rather than leaves. A number of studies have established the existence of such intake. With respect to pines, for example, a recent study in the journal *Tree Physiology* reports that “plants can acquire carbon from sources other than atmospheric $\mathrm{CO}_2$, including soil-dissolved inorganic carbon (DIC). Although the net flux of $\mathrm{CO}_2$ is out of the root, soil DIC can be taken up by the root, transported within the plant, and fixed…”\(^43\) Similar behavior has been proposed for sycamore and willow trees.\(^44\) Oliver Rackham, a leading specialist on olive trees, has noted that olive trees in particular spread massive roots in a search for water in dry climates.\(^45\) As to seed-producing plants, all modern studies known to me suggest that plants take up at least a small amount of $\mathrm{CO}_2$ through their roots,\(^46\) and none reports they do not, notwithstanding certain assertions to this effect. Moreover, it is necessary to consider the possibility that the uptake of soil carbon saturates at a fairly low value to protect the health of the tree or plant (unless the tree or plant is overwhelmed by proximity to a volcanic vent). Plants and trees of course principally take up $\mathrm{CO}_2$ through photosynthesis sites in their leaves. The effect of dense leaf canopies on radiocarbon determinations is the subject of a forthcoming study by S. Soter.

It is sometimes claimed that the presence of $^{14}$C-deficient carbon in seeds or trees from Thera would necessarily result in gross and highly irregular distortions.\(^47\) The Southern Hemisphere anomaly,  

\(^{39}\) Bruns et al. 1980, 534 fig. 1.  
\(^{41}\) Mörner & Etiope 2002, 193.  
\(^{42}\) McCoy & Heiken 2000a; Palyvou 2005, 177–8.  
\(^{43}\) Ford et al. 2007, 375. I am most grateful to Steven Soter for providing this reference. He notes that “the seedlings acquired about 0.8% of their carbon from soil DIC ($\mathrm{CO}_2$ and its derivatives). Interestingly, the soil-derived carbon was partitioned unevenly among the various plant tissues, with a higher concentration in stems than in needles (leaves)” (pers. comm. 18 Nov. 2007).  
\(^{45}\) Rackham 1965–1966. I am grateful to Peter Warren for this reference.  
\(^{46}\) Cramer 2002; Enoch & Olesen 1993; Cramer & Richards 1999. See also Saleska et al. 2007.  
\(^{47}\) Manning 2007, 111–2.
constrained within a range of 8–80 years over a 900-year span, indicates that, in some areas at least, discrepancies of less than a century are the rule rather than the exception. The Gordion log determinations, where a less-than-a-century discrepancy has been attributed to a low-solar-activity-induced cold-climate shift affecting the growing season and the absorption of sunlight during the late 9th–early 8th century BC, and the differences of up to a hundred years at around 680 BC in Japan are also in this range.48 The 17th century BC is believed to have been a period of intense volcanic activity involving the eruption of Aniakchak and the Hayes Volcano in Alaska, Avellino in Italy, a volcano in Japan, and perhaps Mt. St. Helens in Washington state.49 Research by Eddy describes a period of rapidly diminishing solar activity following a solar maximum which affected the 14C absorption by trees during the period 1850–1700 BC, which may have affected climate and seasonal variation differently in Theran samples versus European and central Anatolian calibration curve measurements.50

Fortunately, awareness of such potential problem areas is becoming evident with the radiocarbon laboratory community. For example, C. Bronk Ramsey, the Director of the Oxford Radiocarbon Accelerator Unit, in his review of the current state of radiocarbon dating in the 50th anniversary issue of *Archaeometry* has carefully noted that 1) “[o]cean circulation and climate are obviously not in a steady state and so the reservoir offsets seen today will not be the same as those prevailing in the past (see, e.g., Ascough *et al.* 2007)”;51 2) “[u]nfortunately for dating applications, the oceanic circulation is an unwanted complication and it is usually only possible to make allowance for the spatial component of the variability”;52 and 3) “[i]n practice, the radiocarbon in any one region of the ocean will vary relative to the surface oceanic average. This variability, first seen in places where there is significant ocean upwelling (Monges Soares 1993), is much more likely to be the rule than the exception”.53 With respect to potential freshwater old-carbon reservoir effects, Bronk Ramsey observes that

[h]ere, we know even less than we do about the oceans. Such freshwater systems not only act as reservoirs in their own right and exchange CO2 with the atmosphere, but also incorporate carbon from carbonates of geological origin. This, in principle, means that the radiocarbon concentration can lie anywhere between the levels in the atmosphere and those of the bedrock (effectively zero).54

The potential reservoir effect of old carbon on radiocarbon dates is significant, both in general and with regard to the environment of Thera in particular. The problem is generally ignored in the publication of Aegean radiocarbon determinations, however.

A recent article by Manning contends that “at present there seems no even vaguely satisfactory explanation that could plausibly account for such a small and consistent/systematic ‘old’ age error/contamination for radiocarbon dates for the whole region at this time (and only this time)”.55 As we shall soon see, there is no credible radiocarbon dating evidence at this time for the whole region, and indeed for anywhere but Thera itself. As to the claim that such a Theran anomaly, if present, would exist “only at this time”, there is no evidence at all for Theran radiocarbon dates at any other time. No radiocarbon samples were obtained in the early excavations of the Archaic or Hellenistic–Roman sites. Indeed, there is no evidence for human presence on Thera between the eruption and the 13th century BC.

With respect to determinations from the eruption horizon itself, the pre-olive branch evidence is ambiguous. Most radiocarbon measurements fall within the oscillating portion of the radiocarbon curve, which makes it impossible to distinguish dates between 1615 and 1525 BC. A few determinations give dates somewhat earlier, putatively for any of the myriad reasons discussed in this paper why some radiocarbon determinations provide misleadingly early dates. (Consider, for example, the dif-
ference between Oxford measurement OxA 1552 at 3390 BP ±65 and OxA 1555 at 3245 BP ±65, or between Heidelberg Hd 5058/5519 at 3490 BP ±80 and Hd 6059/7967 at 3140 BP ±70. Sturt Manning summarizes the situation as follows:

it is apparent from the parameters and data for the Thera “problem” … that a solution may well be unlikely from the volcanic destruction level radiocarbon data alone. The data at hand either indicate strongly, or, in most cases, tend toward, a 17th century solution. However, it is undeniable that not all do, and that the radiocarbon “gap” between 17th century certainty, and 17th/16th century ambiguity, is all of about 20–30 radiocarbon years. This span is about the same as the best measurement precision available today for Accelerator Mass Spectrometry determinations—the source technology for nearly all the modern Thera radiocarbon ages. Hence one is operating on the limits of precision. And even small laboratory offsets, or variations caused in sample pre-treatment regimes, could become relevant in pushing data into, or out of, the ambiguity threshold. Hence we hit an impasse. And a skeptic is justified to be so.57

Numerous other bases for skepticism, from the problems of pretreatment and inter-laboratory measurement differences, to the fragile and uncertain nature of the calibration curve, to the effects of seasonal, regional and climate variation, to the problems inherent in the Bayesian algorithms connecting 14C measurements to the calibration curve, to the potential presence of 14C-deficient carbon, have been considered above. Statements of radiocarbon-measurement ranges in the nature of ±13 for Bronze Age dates should come with caveats regarding all these potential sources of error.

The claim that relevant radiocarbon determinations exist from “the whole region” (i.e., from Trianda on Rhodes, Miletus in Anatolia, and sites on Crete) supporting an Aegean Long Chronology have been shown to be faulty. The evidence from Rhodes consists of a piece of wood of insecure context which produced inconclusive measurements for its three decadal segments, with 80 years separating adjacent decadal segments and the outer segment providing earlier dates than an inner segment.58 The evidence from Miletus comes from a piece of wood which the excavator believes probably came from a chair or throne in a shrine area.59 The piece of wood was covered in Thera tephra, but there was no way of determining the age of the wood when the chair, throne or beam was made, and still less the age when it was destroyed. The Cretan claim rested in part on the single aberrant measurement by the Belfast lab which was incorporated into the calibration curve but has since been disavowed,60 and in part on unjustified or erroneous assumptions concerning the number of LM IB destructions at Khania or the simultaneity of LM IB destructions on Crete.

Let us turn at last to the now-famous branch of an olive tree found by an Aarhus University team covered with tephra from the eruption on Thera. The Media Release of 27 April 2006 of the Faculty of Science of Aarhus University has caused some astonishment, for it cites Dr. Walter Friedrich as claiming that the Theran artist who painted the miniature fresco of the fleet scene depicted the effect of the tsunami as it was happening, and that this accounts for the damaged prow of one ship and the drowning naked men,61 notwithstanding the fact that the image is a standard depiction of a defeated enemy, warriors are shown ashore, and all the other ships are upright. More importantly, the tsunami followed the major (Minoan C) phase of the eruption that deposited four meters of tephra over the site, by which time all the inhabitants had departed.62

Let us focus on the radiocarbon measurements, however, for they form the most substantial argument to date for a long chronology. The article by Friedrich et al. in Science states that radiocarbon dates were obtained for four successive segments of the branch, which had a total of about 72 rings; that the radiocarbon measurements fall in the right order with the inner rings giving older dates, and finally that the measurement of the latest segment

56 Manning et al. 2006b.
58 Manning et al. 2006a; Wiener 2009.
61 Friedrich & Heinemeier 2006.
62 McCoy & Heiken 2000a.
gives a destruction date of 1613 BC, ±13 years, using the 2004 smoothed calibration curve (but possibly as late as 1575 BC if the 1998 curve is used and assumptions about the number of years represented by the rings relaxed). Of course 1575 BC is within the oscillating portion of the calibration curve as we have seen, but the earlier segments of the branch are said to give dates earlier than the 1620–1520 period of oscillation. How persuasive is this evidence?

The first question which arises is whether the branch in question was living at the time of the eruption or had died and ceased to absorb 14C earlier. Oliver Rackham, the coauthor of *The Making of the Cretan Landscape* (Rackham and Moody 1996) and *The Nature of Mediterranean Europe* (Grove and Rackham 2003), has kindly provided the following comment in this regard:

I don’t follow the argument that the last growth ring of the wood specimen was contemporary with the eruption. The authors describe it as a “branch”, but the pictures indicate a shattered radial fragment of a stem or major branch at least 40 cm in diameter. As we all know, many olive trees bear dead branches and fragments of branches, and I would not rule out the possibility that some of these might last 100 years after they died. The tree itself may have been alive when it was buried, but not all its limbs were necessarily alive or even recently dead.

Harriet Blitzer (the leading specialist in the ethnography of preindustrial Cretan agricultural practice and author of ‘Agriculture and Subsistence’ in *The Plain of Phaistos* [2004]) concurs, stating that certain parts of a mature tree may die and other parts of the same tree may continue to grow and bear fruit. The decision to prune the dead branches is based in part on the overall structure of the tree (its stability and balance) and on whether the dead sections prove an obstacle to further growth in other parts of the plant. In many cases, among older trees, there are massive dead branches that have been left untouched for the above reasons. In those instances, the remainder of the tree is alive, growing, and producing fruit.

It is worth noting that the radiocarbon date of 1613 ±13 proposed for the last segment would fit exactly the archaeological date (based on interconnections with Egypt, and estimates of the duration of the LM IA, LH I, and LC I periods) for the massive Seismic Destruction Level at the beginning of LC I, an event which could have caused the death of the branch.

With respect to the potential presence of 14C-deficient carbon (prevalent at and around Thera as noted above) in the olive branch, we do not and cannot know anything about the pre-eruption location of terrestrial vents. Recent research indicates that a caldera existed prior to the Minoan period eruption, perhaps formed by an earlier eruption around 25,000 BC, but the extent of that caldera cannot be closely determined. Accordingly, the statement made in the abstract of the paper by W.L. Friedrich and J. Heinemeier that the tree was growing at a distance of more than 2.5 km from what is today the active volcanic zone is irrelevant. Moreover, old carbon can exist outside the active volcanic zone, as noted above. Of course we can have little idea of the pre-eruption landscape, including whether the tree stood in proximity to a degassing vent or to a river or other water-source of 14C-deficient-carbon contamination which would put dates older. The propensity of olive trees to seek groundwater for nourishment and the potential presence of 14C-deficient carbon in groundwater in a volcanic landscape have already been noted, as has the potential for upwelling of 14C-deficient carbon from the sea surrounding Thera. A general discussion of the problems posed for radiocarbon dating by the reservoir effects of 14C-deficient carbon from upwelling of seawater and from groundwater is now available in the 50th anniversary issue of *Archaeometry*.

In sum, at present there are simply too many unknowns with respect to the radiocarbon evidence to solve the equation. The advice of Aristotle to look for exactitude in each class of things only so far as the nature of the matter allows (*Nicomachean Ethics* 

---

63 Friedrich et al. 2006.
64 O. Rackham, pers. comm. of 11 May 2008.
65 Pers. comm. 23 July 2008; see also Blitzer forth.
66 Heiken et al. 1990.
67 Yu et al. 2007.
68 Bronk Ramsey 2008b.
1094b 23–27) remains sound and is applicable here. The radiocarbon-dated olive branch for the moment is that dreaded scientific phenomenon, a singleton. Both intensive remeasurement of the existing branch (preferably by a different radiocarbon laboratory) to determine whether the initial measurements are replicable and the location and measurement of an additional branch or branches are critical desiderata. We hope for further discoveries. “Extraordinary claims require extraordinary evidence”, said the scientist Carl Sagan. The scientific evidence, which now consists significantly of the radiocarbon measurements from the single Theran olive branch, does not seem sufficient in light of all the areas of uncertainty described to shift the balance of probability against the well-established text-plus-interconnections-based Aegean Chronology.

---

69 Sagan 1979, 62.
Aitken, M.J. 1990
Science-based dating in archaeology, London.

Akkermans, P.M.M.G. & G. M. Schwartz 2003
The archaeology of Syria: from complex hunter-gatherers to early urban societies, Cambridge.

‘The geochemical regimes of Pito de la Fournaise Volcano (Réunion) during the last 530 years’, Journal of Petrology 38, 171–201.

Alberti, L. 2004

Alexiou, S. 1967
Γιτάρομονωτοι τάφοι λιμένος Κνωσού (Κατσαμπά), Athens.

Allen, J.P. 2002a

Allen, J.P. 2002b
The Hoqanakht Papyri, New York

Allen, P., S. Feiner, A. Troccoli, H. Benko, E. Ishak, B. Smith, 2004

Al-Maqdissi, M. 2008

Al-Maqdissi, M. & D.M. Bonacossi 2005
The Metropolis of the Orontes, Damascus.

Al-Maqdissi, M. 2008

Anastakis, G. 2007
‘The anatomy and provenance of thick volcaniclastic flows in the Cretan basin, south Aegean Sea’, Marine Geology 240, 113–35.

Andreadaki-Vlasi, M. 1997

Andreadaki-Vlasi, M. 2000
The county of Chania through its monuments (2), Athens.


Assmann, J. 1970
Der König als Sonnenpriester (Abhandlungen des Deutschen Archäologischen Instituts Kairo: Ägyptologische Reihe 7), Glückstadt.

Aston, B.G. 1994
Ancient Egyptian stone vessels. Materials and forms (Studien zur Archäologie und Geschichte Altägyptens, 5), Heidelberg.

Aston, D.A. 2003

Aston, D.A. 2004
Tell el-Dab’a XII. A corpus of Late Middle Kingdom and Second Intermediate Period pottery, Vienna.

Aston, D.A. 2007

Åström, P. 1961-1962
Åström, P. 1971

Åström, P. 1972a
The Swedish Cyprus Expedition. Vol. IV. Part 1B, Lund

Åström, P. 1972b

Åström, P. 1979

Åström, P. (ed.) 1987a
High, middle or low? Acts of an international colloquium on absolute chronology held at the University of Gothenburg 20th–22nd August 1987 (Studies In Mediterranean Archaeology – Paper Back 56), Gothenburg.

Åström, P. 1987b

Åström, P. 2000

Åström, P. (ed.) 2001a
The chronology of Base-Ring and Bichrome Wheel-made Ware. Proceedings of a colloquium held in the Royal Academy of Letters, History and Antiquities, Stockholm, May 18–19 2000 (KVHAA Konferenser 54), Stockholm.

Åström, P. 2001b

Bagh, T. 2000
The beginning of the Middle Bronze Age in Egypt and the Levant, Ph.D. dissertation, University of Copenhagen, Copenhagen.

Bagh, T. 2002

Baillie, M.G.L. 1990

Baillie, M.G.L. & M.A.R. Munro 1988

Baines, P.G, Morgan, T.J., Sparks, R.S.J. -2008


Banou, E.S. 1998

Barber, R.L.N. 1987
The Cyclades in the Bronze Age, London.

Barberi, F. & M.L. Carapezza 1994
‘Helium and CO₂ soil gas emission from Santorini (Greece)’, Bulletin of Volcanology 56, 335–42.

Barnard, K.A & T.M. Brogan 2003
Mochlos IB Period III. Neopalatial settlement on the coast: The Artisan’s Quarter and the farmhouse at Chalinomouri. The Neopalatial pottery (Prehistory Monographs 8), Philadelphia.

Barnard, K.A. & T.M. Brogan forth.
‘The Late Minoan IB pottery from Mochlos’, Brogan & Hallager forthcoming


‘¹⁰Be and dust’, Nuclear Instruments and Methods B123, 296–301.

Baxter, P.J. 2000

Baxter, P.J. 2001

Baxter, P.J. & M. Kapila 1989

Beckerath, J. von 1997
Chronologie des Pharaonischen Ägypten. Die Zeitbestimmung der ägyptischen Geschichte von der Vorzeit bis 332 v. Chr. (Münchner Ägyptologische Studien 46), Mainz.

Beckman, G. B. 2005


Bennett, Ch. 2006 ‘Genealogy and the chronology of the Second Intermediate Period’, Ägypten & Levante 16, 231–43.


Betancourt, P.P. 1985 The history of Minoan pottery, Princeton.


Bevan, A. 2007
*Stone vessels and values in the Bronze Age Mediterranean*, Cambridge.
Bichler, M., K. Breitenecker, G. Steinhauser & J. Sterba 2006


Bichler, M., M. Exler, C. Peltz & S. Samninger 2003


Bichler, M., C. Peltz, S. Samminger & M. Exler 2002
‘Aegean tephra – an analytical approach to a controversy about chronology’, *Ägypten & Levante* 12, 55–70.

Bietak, M. 1987
‘The Middle Bronze Age of the Levant – a new approach to relative and absolute chronology’, in Åström 1987a, 78–120.

Bietak, M. 1994

Bietak, M. 1996a
*Avaris, the capital of the Hyksos*, London.

Bietak, M. 1996b

Bietak, M. 1998
‘The Late Cypriot White Slip I-ware as an obstacle to the high Aegean chronology’ in Balmuth & Tykot 1998, 321–2.

Bietak, M. (ed.) 2000a

Bietak, M. 2000b

Bietak, M. 2001
‘Towards a chronology of Bichrome Ware? Some material from ‘Ezbet Helmi and Tell el-Dab’a’, in Åström 2001a, 175–201.

Bietak, M. 2002a

Bietak, M. 2002b
‘Relative and absolute chronology of the Middle Bronze Age: comments on the present state of research’, in Bietak 2002a, 29–42.

Bietak, M. (ed.) 2003a

Bietak, M. 2003b

Bietak, M. 2004
Review of *A test of time (= Manning 1999), Bibliotheca Orientalis* 61, 199–222.

Bietak, M. 2005a

Bietak, M. 2005b

Bietak, M. 2007

Bietak, M. & E. Czerny (eds.) 2007

Bietak, M., J. Dorner & P. Jánosi 2001


Bietak M., N. Marinatos & C. Palivou 2007 Tauræador scenes in Tell el-Dab’a (Avaris) and Knossos (Untersuchungen der Zweigstelle Kairo des Österreichischen Archäologischen Institutes 27), Vienna.


Bleiberg, E. 1996 The official gift in ancient Egypt, Norman.


Blong, R.J. 1982 The time of darkness: local legends and volcanic reality in Papua New Guinea, Canberra.


Bourriau, J. 1981a Umm el-Ga’ab: pottery from the Nile Valley before the Arab conquest, Cambridge.


Branigan, K. 1968 Copper and bronze working in Early Bronze Age Crete (Studies in Mediterranean Archaeology 19), Lund.


Briggs, M.J., C.E. Synolakis, G.S. Harkin & D.R. Green 1995 ‘Laboratory experiments of...

Brinkman, J. A. 1968
A political history of Post-Kassite Babylonia, Rome.

Brinkman, J. A. 1976²

Brogan, T.M. & E. Hallager (eds.) forth.
LMIB pottery: relative chronology and regional differences, Athens (forthcoming)

Bronk Ramsey, C. 1995

Bronk Ramsey, C. 2001

Bronk Ramsey, C. 2008a

Bronk Ramsey, C. 2008b

Bronk Ramsey, C. 2009

Bronk Ramsey, C., C.E. Buck, S.W. Manning, P. Reimer & H. van der Plicht 2006
‘Developments in radiocarbon calibration for archaeology’, Antiquity 80, 783–98.

Bronk Ramsey, C., T. Higham & P. Leach 2004b
‘Towards high-precision AMS: progress and limitations’, Radiocarbon, 46, 17–24

Bronk Ramsey, C., S.W. Manning & M. Galimberti 2004a
‘Dating the volcanic eruption at Thera’, Radiocarbon 46, 325–44.

Bronk Ramsey C., van der Plicht, J. and Weninger, B. 2001

Brook, M., C.B. Moore, & T. Sigurdsson 1974

‘Geoarchaeological tsunami deposits at Paläkastro (Crete) and the Late Minoan IA eruption of Santorini’, Journal of Archaeological Science 35, 191–212.


Brunton, G. & R. Engelbach 1927
Giurò (British School of Archaeology in Egypt and Egyptian research account twenty-fourth year, 1918), London.

Brunton, G. & W.M.F. Petrie 1924
Sedment, London.

Bruyere, B. 1937

Bryan, B. 2006


Buchholz, H.-G. 1974

Buchholz, H.-G. 1999

Bayesian approach to interpreting archaeological data, Chichester.

Buck C.E. & P.G. Blackwell 2004

Buck, C., T. Higham & D. Lowe 2003
‘Bayesian tools for tephrochronology’, The Holocene 13, 639–47.

Bull, I.D., P.P. Betancourt & R. Evershed 1999
‘Chemical evidence for a structured manuring regime on the island of Pseira, Crete during the Minoan period,’ in Betancourt et al. 1999, 69–73.


Cioni, R., L. Gurioli, A. Sbrana & G. Vougioukalakis 2000 ‘Precursory phenomena and destructive events related to the Late Bronze Age Minoan (Thera, Greece) and AD 79 (Vesuvius, Italy) Plinian eruptions;


Cline, E.H. & D. Harris-Cline (eds.) 1998 The Aegean and the Orient in the Second Millennium (Aegaeum 18), Liège.


Davies, B.G. 1995 Egyptian historical records of the later Eighteenth Dynasty, fascicle VI, Warminster.

Davis, E.N. 1977 The Vapheio Cups and Aegaean gold and silver ware, New York.


Doumas, C.G. 1974

*Thera and the Aegean World I*, London.

Doumas, C.G. (ed.) 1980
*Thera and the Aegean World II*, London.

Doumas, C.G. 1983

Doumas, C.G. 1983

Doumas, C.G. 1998

Doumas, Ch. 2003
Ξεθάβοντας μια νεκρή πολιτεία στο Ακρωτήρι Θήρας, «ΑΛΣ», Τεύχος 1, Athens, 21–41.

Doumet-Serhal, C. 2003

Doumet-Serhal, C. 2004

Doumet-Serhal, C. 2008
‘The British Museum Excavation at Sidon: markers for the chronology of the Early and Middle Bronze Age in Lebanon’, in *The Bronze Age in the Lebanon*, M. Bietak & E. Czerny (eds.), Wien, 11–44.

Doumet-Serhal, C., A. Rabate & A. Resek (eds.) 2004
*Decade: a decade of archaeology and history in the Lebanon*, Beirut.

Downey, W. S. & D. H. Tarling 1984
‘Archaeomagnetic dating of Santorini volcanic eruptions and fired destruction levels of Late Minoan civilization’ *Nature* 309, 519–23.

Dreyer, G. 1998
*Umm el-Qaab I. Das Prädynastische Königsgrab U-j und seine frühen Schriftzeugnisse* (Deutsches Archäologisches Institut Archäologische Veröffentlichungen 86), Mainz.

Driessen, J. M. & A. Farnoux (eds.) 1997
*La Crète Mycénienne* (Bulletin de la Correspondence Hellenique Supplement 30), Paris.

Driessen, J. & C. Macdonald 1997
The troubled island: Minoan Crete before and after the Santorini eruption (Aegaeum 17), Liège.

Driesen J. M. & J. A. MacGillivray forth.

*Santorini volcano* (Geological Society Memoirs 19), London.

Druitt, T.H. & V. Francaviglia 1990

Druitt, T.H., R.A. Mellors, D.M. Pyle, & R.S.J. Sparks 1989
‘Explosive volcanism on Santorini, Greece’, *Geological Magazine* 126, 95–126.

Dufek, J. & G.W. Bergantz 2007
‘Dynamics and deposits generated by the Kos Plateau Tuff eruption: controls on basal particle loss on pyroclastic flow transport’, *Geochemistry Geophysics Geosystems* 8(12).

Duhoux, Y. 2003

Dunand, M. 1927
‘La Cinquième Campagne des Fouilles de Byblos’, *Syria* 8, 93–104.

Dunand, M. 1937–1939

Dunand, M. 1939b

Dunand, M. 1950–1958

Dunn, S. 2002
*The chronology of the Aegean Late


Eddy, J.A. 1977
‘Climate and the changing sun’, Climatic Change 1, 173–90.

Edwards, J.S. 2005

El-Khouli, A. A. H. 1993

Enoch, H.Z. & J.M. Olesen 1993
‘Tansley review no. 54, plant response to irrigation with water enriched with carbon dioxide’, New Phytologist 125, 249–58.

‘The Stronghyle caldera: geological, palaeontological and stable isotope evidence from radiocarbon dated stromatolites from Santorini, in Hardy et al. 1990b, 139–50.

Eriksson, K.O. 1991

Eriksson, K.O. 1992

Eriksson, K.O. 1993
Red Lustrous Wheel-Made Ware (Studies in Mediterranean Archaeology 103), Jonsered.

Eriksson, K.O. 2001a
‘Cypriot ceramics in Egypt during the reign of Thutmosis III: the evidence of trade for synchronizing the Late Cypriot cultural sequence with Egypt at the beginning of the Late Bronze Age’, in Åström 2001a, 51–68.

Eriksson, K.O. 2001b

Eriksson, K.O. 2003
‘A preliminary synthesis of recent chronological observations on the relations between Cyprus and other Eastern Mediterranean societies during the Late Middle Bronze – Late Bronze II periods’, in Bietak 2003a, 411–29.

Eriksson, K.O. 2007a
‘Using Cypriot Red Lustrous Wheel-made Ware to establish cultural and chronological synchronisms during the Late Bronze Age’, in Hein 2007, 51–60.

Eriksson, K.O. 2007b
The creative independence of Late Bronze Age Cyprus. An account of the archaeological importance of White Slip ware (Contributions to the chronology of the Eastern Mediterranean 10), Vienna.

Evans, A. 1906
The prehistoric tombs of Knossos, London.

Evans, A.J. 1928
The Palace of Minos at Knossos, II, Oxford.

Evans, A.J. 1935
The Palace of Minos at Knossos, IV, London.

Farrand, W.R., & C.H. Stearns 2004

Fimmen, D. 1924
Die Kretisch-Mykenische Kultur, Leipzig.

Firth, C.M. & B. Gunn 1926
Excavations at Saqqara. Teti Pyramid Cemeteries I–II, Cairo.

Fischer, P.M. 2001
‘Cypriote Bichrome Wheel-made Ware and Base-Ring Ware from the new excavations at Tell el-’Ajul: synchronism and dating’, in Åström 2001a, 221–30.

Fischer, P. M. 2003

Fischer, P.M. 2004
‘Coast contra inland: Tell el-’Ajul
and Tell Abu al-Kharaz during the late Middle and Late Bronze Ages', *Levant* 14, 249–63.

Fischer, P.M. 2006a

Fischer, P.M. (ed.) 2006b
*The chronology of the Jordan Valley during the Middle and Late Bronze Ages: Pella, Tell Abu al-Kharaz and Tell Deir ‘Alla*, Vienna.

Fischer, P.M. 2007

Fischer, P.M. & M. Sadeq 2000

Fischer, P.M. & M. Sadeq 2002

Fischer, P.M. & M.J. Whitehouse 2004
‘Quantitative SIMS (IMS1270) of particles from the GRIP Greenland ice core and Thera’, paper presented at ‘Ashes & Ice: SCIAM 2000 workshop on tephra analyses and ice core dating’, Vienna, 8–10 July 2004’.

Flemming, N.C. & C.O. Webb 1986
‘Tectonic and eustatic coastal changes during the last 10,000 years derived from archaeological data’, *Zeitschrift für Geomorphologie* 62, 1–29.


Foster, K. P. 2005

Foster, K. P. & M. Bichler 2003

Foster, K.P. & R.L. Laffineur (eds.) 2003


Fouqué, F. 1879
*Santorin et ses Éruptions*, Paris.

Fouqué, F.A. 1998
*Santorini and its eruptions (= Fouqué 1879, translation by A. McBirney)*, Baltimore.

Francalanci, L., G. E. Vougioukalakis & M. Fytikas 2007

Francaviglia, V. 1990

French E. 2002
*Mycenae. Agamemnon’s capital*, Stroud.

Friedrich, W.L. 2000

‘Existence of a water-filled caldera prior to The Minoan eruption of Santorini, Greece’, *Naturwissenschaften* 75, 567–9.

Friedrich, W.L. & J. Heinemeier 2006
‘New research in science: date of the largest volcanic eruption in the Bronze Age finally pinpointed’, Aarhus University media release (http://www.nat.au.dk/default.asp?id=11296&la=UK).

‘Santorini eruption radiocarbon dated to 1627–1600 BC’, *Science* 312, 548.

Friedrich, W.L., B. Kromer, M. Friedrich, J. Heinemeier, T. Pfeiffer & S. Talamo 2009

Friedrich, W.L., B. Kromer, M. Friedrich, J. Heinemeier, T. Pfeiffer & S. Talamo 2009
‘Santorini eruption radiocarbon dated to 1627–1600 BC: further discussion’, in *Manning & Bruce 2009 (in press)*.

‘The 12,460-Year Hohenheim oak and pine tree-ring chronology from central Europe – a unique annual record for radiocarbon calibration and paleoenvironment

Friedrich, W.L., P. Wagner & H. Tauber 1990


Frost, H. 2004

Furumark, A. 1941
The chronology of Mycenaean pottery, Stockholm.

Furumark, A. 1950

Fuscaldo, P. 2000
The palace district of Avaris. The pottery of the Hyksos period and New Kingdom. Part I: Locus 66 (Untersuchungen der Zweigstelle Kairo des Österreichischen Archäologischen Institutes 16 = Tell el-Daba’a 10), Vienna.

Gadowski, M.O. Guliani, F. Innocenti, G. Marinelli & R. Mazzuoli 1976
‘Geochronological data on recent magmatism of the Aegean Sea,’ *Tectonophysics* 31, 29–34.

Fytkias, M., N. Kolios, & G. Vougioukalis 1990

Galimberti, M., C. Bronk Ramsey & S.W. Manning 2004

Le « Grand Château d’Amon » de Sésostris Ier à Karnak (Mémoires de l’Académie des Inscriptions et Belles Lettres, N. S. 17), Paris.

Between the Aegean and Baltic Seas. Prehistory across borders (*Aegaeum* 27), Liège.

Gambardella, B., C. Cardellini, G. Chiodini, F. Frondini, L. Marini, G. Ottonello & M.V. Zuccolini 2004

Gardiner, A. H. 1906
‘Four papyri of the 18th Dynasty from Kahun’, *Zeitschrift für ägyptische Sprache* 43, 27–47.

Gardiner, A. H. 1946
‘Davies’s copy of the Great Speos Artemidos inscription,’ *Journal of Egyptian Archaeology* 32, 43–56.

Gardiner, A. H. 1948

Gardiner, A. H. 1961
*Egypt of the Pharaohs*, Oxford.

Gasche, H. 2003
‘La fin de la première dynastie de Babylone: une chute difficile’, *Ägypten & Levante* 3, 57–62.

*Dating the fall of Babylon: A reappraisal of Second-Millennium chronology* (Mesopotamian History and Environment II: IV), Ghent.

Gates, M.-H. 2000
‘Kinet Höyük (Hatay, Turkey) and MB Levantine chronology’, *Äkkadica* 119–20, 77–101.

Gestermann, L. 2008

Giddy, L.L. 1999
The survey of Memphis II. Kom Rab’a. The New Kingdom and Post New Kingdom objects (EES Excavation Memoirs 64), London.

Gilbert, J.S. & S.J. Lane 2008

Girella, L. 2007

Goedicke, H. 1988

Goedicke, H. 1992
‘The chronology of the Thera/Santorin explosion’, *Ägypten & Levante* 3, 57–62.
Goedicke, H. 1995
Studies about Kamose and Ahmose, Baltimore.

Goedicke, H. 2004
The Speos Artemidos inscription of Hatshepsut and related discussions, Oakville, CT.

Goldberg, P. 2005

Goodchild, M.F. 2008
‘What does Google Earth mean for the social sciences?’, in Geographic visualization: concepts, tools and applications, M. Dodge, M. McDerby & M. Turner (eds), Chichester.

Grace, V.R. 1940
‘A Cypriote tomb and Minoan evidence for its date’, American Journal of Archaeology 44, 10–52.

Grattan, J.P. & Gilbertson, D.D. 2000

Grayson, A. K. 1983
‘Königslisten und Chroniken B. Akkadisch’, Reallexikon der Assyriologie und vorderasiatischen Archäologie 6, 86–135.

Grayson, A. K. 1975
Assyrian and Babylonian chronicles, Locust Valley, NY.

Grove, A.T. & O. Rackham 2003
The nature of Mediterranean Europe: an ecological history, New Haven.


Guidoboni, E., 1994
Catalogue of ancient earthquakes in the Mediterranean area up to the 10th century, Rome.

Guidoboni, E. & A. Comastri 2005
Catalogue of earthquakes and tsunamis in the Mediterranean area from the 11th to the 15th century, Rome.


Gurrieri, S., M. Liuzzo, & G., Giudice 2008

Gurzadyan, V. 2000

Gurzadyan, V. 2003

Hallager, E. 1977

Hallager, E. 1988

Hammer, C.U. 2000
‘What can Greenland ice core data say about the Thera eruption in the 2nd millennium BC?’, in Bietak 2000a, 35–7.

Hammer, C., H.B. Clausen, & W. Dansgaard 1980

Hammer, C.U., G. Kurat, P. Hoppe & H.B. Clausen 2001

Hammer, C.U., G. Kurat, P. Hoppe, W. Grum & H.B. Clausen 2003
‘Thera eruption date 1645 BC confirmed by new ice core data?’, in Bietak 2003a, 87–94.


Hankey, V. 1967

Hankey, V. 1973
‘Late Minoan finds in the south-Eastern Mediterranean’, Περιοδικό του Πανελλήνιου Πινακιστικού Εργαστήριου της Παλαιολιθικής Εποχής Αρχαίας Ελλάδος & Παραγωγικό του Παλαιολιθικού Εργαστήριου της Παλαιολιθικής Εποχής Αρχαίας Ελλάδος
Hankey, V. 1981
‘Imported vessels of the Late Bronze Age at high places’, in 
Temples and high places in Biblical Times, A. Biran (ed.), Jerusalem, 
108–17.

Hankey, V. 1987

Hankey, V. 1993

Hankey, V. & O. Tufnell 1973

Hankey, V. & P. Warren 1974

Hankey, V. & A. Leonard 1992

Hankey, V. & A. Leonard 1998

Hardy, D.A., C.G. Doumas, J.A. Sakellarakis & P.M. Warren (eds.) 1990a

Hassler, A. & F. Höflmayer 2008

Hatzaki, Eleni M. 2005
Knossos. The Little Palace (British School at Athens Supplement 38), Oxford.

Hatzaki, Eleni M. 2007

Hawkes, H.B., E. Williams, R.B. Seager & E.H. Hall 1908
Gournia, Vasiliki, and other sites on the isthmus of Ierapetra, Crete, Philadelphia.

Hayes, W.C. 1970

Hédevári, P. 1978

Hédevári, P. 1990


Heiken, G. & F. McCoy 1984

Heiken, G., F. McCoy & M. Sheridan 1990

Heiken, G., F. McCoy & M. Sheridan 1990
‘Palaeotopographic and palaeogeologic reconstruction of Minoan Thera’, Hardy et al. 1990b 370–6.

Hein, I. 1994

Hein, I. 1998

Hein, I. 2001a
‘Untersuchungen und vorläufige Bilanz zur Keramik aus ‘Ezbet
Helmi, speziell Areal H/V’, Ägypten & Levante 11, 121–47.

Hein, I. 2001b
‘On Bichrome and Base Ring Ware from several excavation areas at ‘Ezbet Helmi’, in Åström 2001a, 231–47.

Hein, I. (ed.) 2007
The Lustrous Wares of Late Bronze Age Cyprus and the Eastern Mediterranean, Vienna.

Heinz, M. 1992

Hebler, W. 1951

Held, W. 1992

Helten, M. 1989

Herbert, D. & F. Bardossi 1968

Hieke, W. 2000

Hill, L.L. 2006

Höckmann, O. 1974

Höflmayer, F. 2007
‘Ägyptische Skarabäen auf Kreta und ihre Bedeutung für die absolute Chronologie der minoischen Altpalastzeit (MM IB-MM IIB)’, Ägypten & Levante 17, 107–25.

Hohneck, H. 2006

Hood, M.S.F. 1956

Hood, M.S.F. 1962a

Hood, M.S.F. 1962b

Hood, M.S.F. 1971

Hood, M.S.F. 1978
The arts in Prehistoric Greece, Harmondsworth.

Hood, M.S.F. 1990
‘Traces of the eruption outside Thera’, in Hardy et al. 1990a, 681–90.

Hood, M.S.F. 1985

Hood, M.S.F. 1996

Hood, M.S.F. 2000

Hood, M.S.F. 2005
‘Dating the Knossos frescoes’ in Morgan 2005, 45–81.

Hope Simpson, R. 2005

Hornung, E. 1971
Das Grab des Haremhab im Täle der Könige. Bern.

Hornung, E. 1987

Hornung, E., R. Krauss & D.A. Warburton (eds.) 2006
Ancient Egyptian chronology. (Handbook of Oriental Studies I: 83), Leiden.

Horwell, C.J., I. Fenoglio, K. Vala Ragnarsdottir, R.S.J. Sparks & B. Fubini 2003
‘Surface reactivity of volcanic ash
from the eruption of Soufrière Hills volcano, Montserrat, West Indies with implications for health hazards’, *Environmental Research* 93, 202–15.


Jidejian, N. 1977 *Byblos through the ages*, Beirut.


Kaplan, M.F. 1980 The origin and distribution of Tell el Yahudiyyah Ware (Studies in Mediterranean Archaeology 42) Gothenburg.
Karageorghis, V. (ed.) 1979

Karageorghis, V. 1990
*Tombs at Palaepaphos, 1. Teratsoudhia 2. Eliomylia, Nicosia.*

Karageorghis, V. 1991

Karageorghis, V. (ed.) 2001

Karageorghis, V. 2006
*Aspects of everyday life in ancient Cyprus. Nicosia.*

Karo, G. 1930-33
*Die Schachtgräber von Mykenai I-II, Munich.*

Kastens, K.A. & M.B. Cita 1981

Keel, O. 1997
*Corpus der Stempelsiegeln-Amulette aus Palästina/Israel. Katalog, Band I (Orbis Biblicus et Orientalis, Series Archaeologica 13), Freiburg.*

Keenan, D.J. 2002

Keenan, D.J. 2003

Kemp, B.J. & R.S. Merrillees 1980
*Minoan pottery in Second Millennium Egypt, Mainz.*

Kempinski, A. 1974

Kempinski, A. 1993
‘The Middle Bronze Age in northern Israel, local and external synchronisms’, *Ägypten & Levante* 3, 69–73.

Kempinski, A. 1997

Kempinski, A. (ed.) 2002
*Tel Kabri: The 1986-1993 excavations seasons, N. Scheftelowitz & R. Oren (eds.), Tel Aviv.*

Kempinski, A., L. Gershuny & N. Scheftelowitz 2002


Keswani, P.E.S. 2005


Kirk, G. S. 1985

Kitchen, K.A. 1987

Kitchen K. A. 1996

Kitchen, K.A. 2000

Kitchen K. A. 2002
‘Ancient Egyptian chronology for Aegeanists’, *Mediterranean Archaeology and Archaeometry* 2, 5–12.

Kitchen, K. A. 2007

Klengel, H.1992
*Syria 3000-300 BC, Berlin.*

Klug, A. 2002
*Königliche Stelen in der Zeit von Ahmose bis Amenophis III (Monumenta aegyptiaca 8), Brussels.*
Knappett, C. & T. F. Cunningham 2003 

Koch, J. 1998

Koehl, R. 2000

Koehl, R. B. 2006
Aegean Bronze Age rhyta (Prehistory Monographs 19), Philadelphia.

Kopetzky, K. 2002
‘The dipper juglets of Tel el-Dab’a. A typological and chronological approach’, in Bietak 2002a, 227–44.

Kooij, van der G. 2006
‘Tell Deir el-Allah. The Middle and Late Bronze Age chronology’, in Fischer 2006a, 199–226.

Krauss, R. 1985
Sothis- und Monddaten (Hildesheimer Ägyptologische Beiträge 20), Hildesheim.

Krauss, R. 2007


‘Regional 14CO2 offsets in the troposphere: magnitude, mechanisms, and consequences’, Science 294, 2529–32.

Kugler, F.X. 1910

Kuniholm, P.I. 1990
‘Overview and assessment of the evidence for the date of the eruption of Thera’, in Hardy & Renfrew 1990, 13–8.

Kuniholm, P.I., B. Kromer, S.W. Manning, M. Newton, C.E. Latini & M.J. Bruce 1996

Laboury, D. 2006

Laffineur, R. L. & L. Basch (eds.) 2005
EMPORIA. Aegeans in the central and Eastern Mediterranean (Aegaeum 25), Liège.

Laffineur, R. & E. Greco (eds.) 2005
EMPORIA. Aegeans in the central and Eastern Mediterranean (Aegaeum 25), Liège.

Lal, D. & B. Peters 1967

Lamarchand, N. & J.-R. Grasso 2007

LaMarche, V.C. & K.K. Hirschboeck 1984

Lambrou-Phillipson, C. 1990
Hellenorientalia plus Orientalia. A catalogue of Egyptian, Mesopotamian, Mitannian, Syro-Palestinian, Cypriot and Asia Minor objects from the Bronze Age Aegean (Studies in Mediterranean Archaeology Pocketbook 95), Gothenburg.

Landsberger, B. 1954

Lapp, P. W. 1967

Larsen, M.T. 1976
The Old Assyrian city-state and its colonies, Copenhagen.


Latter, J. H. 1981

Le Pichon, X. & J. Angelier 1979

Leatham, J. & S. Hood 1958/1959

Leonard, A. 1994
An index to the Late Bronze Age Aegean pottery from Syria-Palestine (Studies in Mediterranean Archaeology 114), Jonsered.

Lepsius, C.R. 1849-1859
Denkmäler aus Ägypten und Äthiopien, Leipzig.

Lilyquist, C. 1988

Lilyquist, C. 1994
‘Objects attributable to Kamid el-Lôz and comment on the date of some objects in the ’Schatzhaus’, in Das ’Schatzhaus’ im Palastbereich: Die Befunde des Königgrabes, W.

Lilyquist, C. 1995
Egyptian stone vessels. Khian through Tuthmosis IV, New York.

Lilyquist, C. 1996
‘Stone vessels at Kâmid el-Lôz, Lebanon: Egyptian, egyptianizing, or non-Egyptian? A question at sites from the Sudan to Iraq to the Greek Mainland’, in ’Schatzhaus’-Studien, R. Hachmann (ed.) (Saarbrücker Beiträge zur Altertumskunde 47 = Kamid el-Lôz 16), Bonn, 133–73.

Lilyquist, C. 1997

Lilyquist, C. 2003
The tomb of Three Foreign Wives of Tuthmosis III, New York.

Lipinska, J. 2001

Liverani, M. 1973

Lolos, Y. G. 1990

Luce, J.V 1976

Macdonald, C. F. 2001
‘Chronologies of the Thera eruption’ (= Review of Manning 1999), American Journal of Archaeology 105, 527–32.

Macdonald, C. F. 1990

Macdonald, C. F. 1996

Macdonald, C. F. 2005
Knossos, London.

Macedonio, G., M. T. Pareschi & R. Santacroce 1990

MacGillivray, J.A. 1984

MacGillivray, J.A. 1995
‘A Minoan cup at Tell el-Dab’a’, Ägypten & Levante 5, 81–4.

MacGillivray, J.A. 1997
‘The re-occupation of eastern Crete in the Late Minoan II-

MacGillivray, J.A. 1998
Knossos: pottery groups of the Old Palace Period (British School at Athens Studies 5), London.

MacGillivray, J.A. 2003

MacGillivray, J.A. 2004

MacGillivray, J.A. 2008

MacGillivray, J.A. forth.

The Palaikastro Kouros (British School at Athens Studies 6), London.


Palaikastro: Building 1. Sacred space in transition (British School at Athens Supplementary Volume), forthcoming.

Mackay, E.J.H. & M.A. Murray 1952
Ancient Gaza, Vol. 5 (British School of Egyptian Archaeology 64), London.

Mackenzie, D. 1978

Macqueen, J. G. 1986
The Hittites and their contemporaries in Asia Minor, New York.

Maeir, A.M. 2007

Maguire, L.C. 1995

Mallet, J. 2002

Manassa, C. 2003
The Great Karnak Inscription of Merneptah: grand strategy in the 13th century BC. (Yale Egyptological Studies 5), New Haven.

Manning, S.W. 1988
‘The Bronze Age eruption of Thera: absolute dating, Aegean chronology and Mediterranean cultural interrelations’, Journal of Mediterranean Archaeology 1, 17–82.

Manning, S.W. 1992

Manning, S.W. 1995
The absolute chronology of the Aegean Early Bronze Age, Sheffield.

Manning, S.W. 1996

Manning, S.W. 1999
A test of time: the volcano of Thera and the chronology and history of the Aegean and East Mediterranean in the mid Second Millennium BC, Oxford.

Manning, S.W. 2001
‘The chronology and foreign connections of the Late Cypriot I period: times they are a’changin’, in Aström 2001a, 68–94.

Manning, S.W. 2005

Manning, S.W. 2007

Manning, S.W., C. Bronk Ramsey, C. Doumas, T. Marketou, G. Cadogan & C.L. Pearson 2002
‘New evidence for an early date for the Aegean Late Bronze Age and Thera eruption’, Antiquity 76, 733–44.
Manning, S.W. & C. Bronk Ramsey 2003
‘A Late Minoan I-II absolute chronology for the Aegean – combining archaeology with radiocarbon’, in Bietak 2003a, 111–33.

Manning, S. W., C. Bronk Ramsey, W. Kutschera, T. Higham, B. Kromer, P. Steir & E. M. Wild 2006a

Manning, S.W., C. Bronk Ramsey, W. Kutschera, T. Higham, B. Kromer, P. Steier & E.M. Wild 2006b
‘Supporting online material for chronology for the Aegean Late Bronze Age 1700–1400 B.C.’, www.sciencemag.org/cgi/content/ full/312/5773/565/DC1.

Manning, S.W., C. Bronk Ramsey, W. Kutschera, T. Higham, B. Kromer, P. Steier and E. Wild 2009
‘Dating the Santorini/Thera eruption by radiocarbon: further discussion (AD 2006-2007)’, in Manning & Bruce 2009 (in press).

Manning, S.W., M.J. Bruce (eds.) 2009 (in press)
‘Tree-rings, kings, and Old World archaeology and environment: papers presented in honor of Peter Ian Kuniholm, Oxford.

Manning, S.W., L. Crewe & D.A. Sewell 2006c

Manning, S.W., B. Kromer, P.I. Kuniholm & M.W. Newton 2001

Manning, S.W., S.J. Monks, G. Nakou, & F.A. De Mita jr. 1994
‘The fatal shore, the long years and the geographical unconscious. Considerations of iconography, chronology, and trade in response to Negbi’s “The “Libyan landscape” from Thera: a review of Aegean enterprises overseas in the Late Minoan IA period’, Journal of Mediterranean Archaeology 7, 219–35.

Manning, S.W., B. Kromer, P.I. Kuniholm & M.W. Newton 2001

‘On the ceremonial function of the Minoan polythyron,’ Opuscula Atheniensia 16, 57–73.

Marinatos, N. 1998

Marinatos, S. 1939

Marinatos, S. 1967–76
Excavations at Thera I–VII, Athens.

Marketou, T. 1990

Marketou, T., Y. Facorellis & Y. Maniatis 2001
‘New Late Bronze Age cnxchronology from the Ialysos Region, Rhodes’, Mediterranean Archaeology and Archaeometry 1, 19–29.

Marsan, D. & O. Lengline 2008

Marthari, M. 1984

Marthari, M. 1990
‘The chronology of the last phases of occupation at Akrotiri in the light of the evidence from the West House pottery groups’, in Hardy & Renfrew 1990, 57–70.
Marthari, M. 1993

‘Bang! month-scale eruption triggering at Santorini volcano,’ Science 321, 1178.

Marzocchi, W., E. Casarotti & A. Piersanti 2002

Masarik, J. & J. Beer 1999


Mason, B.G., D.M. Pyle & C. Oppenheimer 2004

Matthäus, H. 1995

Matthäus, H. 1996

Matz, F. 1973

McClelland, E. & R. Thomas 1990

McCoy, F.W. 1980a

McCoy, F.W. 1980b
Climate change in the Eastern Mediterranean area during the past 240,000 Years, in Thera and the Aegean World II, Doumas, C., ed. v. 2; London, 79–100.

McCoy, F.W. 1981

McCoy, F.W. 2003

McCoy, F.W. 2005

McCoy, F.W. & S. Dunn 2002
‘Modelling the climatic effects of the LBA eruption of Thera: new calculations of tephra volumes may suggest a significantly larger eruption than previously reported’, Chapman conference on volcanism and the earth’s atmosphere, Thera, Greece: American Geophysical Union.

McCoy, F.W. & S.E. Dunn 2004
‘The LBA eruption of Thera: new finds of tephra and calculations of tephra volumes suggest a significantly larger eruption than previously reported’, (abstract), Archaeological Institute of America, 105th Annual Meeting, San Francisco.

McCoy, F.W. & G. Heiken 2000a
‘The Late-Bronze Age explosive eruption of Thera (Santorini), Greece: regional and local effects’, in McCoy & Heiken 2000b, 43–70.

McCoy, F.W. & G. Heiken (eds.) 2000b
Volcanic hazards and disasters in human antiquity, Boulder (Geological Society of America Special Paper 345).

McCoy, F.W. & G. Heiken 2000c
‘Tsunami generated by the Late Bronze Age eruption of Thera (Santorini), Greece’, Pure and Applied Geophysics 157, 1227–56.
McCoy, F.W., C. Synolakis & G. Papadopoulos 2000
‘Tsunami generated by the LBA eruption of Thera – Evidence from modelling and sedimentary deposits’ (abstract), EOS Transactions, American Geophysical Union 81(48): F1224.

McDonald, A. & N. C. Wilkie, (eds.) 1992
Excavations at Nichoria in southwest Greece. Vol II: The Bronze Age occupation, Minneapolis.


McHargue, L. R. & P. E. Damon 1991

McKenzie, D.P. 1972

McNutt, S.R. 2000


Meier, T., M. Rische, B. Endrun, A. Vafidis & H.-P. Harjes 2004

Merrillees, R.S. 1968
The Cypriote Bronze Age pottery

found in Egypt (Studies in Mediterranean Archaeology 18), Lund.

Merrillees, R.S. 1970

Merrillees, R.S. 1974
‘Appendix III. Tell el-‘Ajul fine and imported wares’, in Tell el-‘Ajul. The Middle Bronze Age remains, J.R. Stewart (ed.) (Studies in Mediterranean Archaeology 38), Gothenburg, 86–111.

Merrillees, R.S. 1992

Merrillees, R.S. 2001

Merrillees, R.S. 2002

Merrillees, R.S. 2003
‘The first appearances of Kamares ware in the Levant’, Ägypten & Levante 13, 127–42.

Merrillees, R.S. 2007
‘The ethnic implications of Tell el-Yahudiyyeh Ware for the history of the Middle to Late Bronze Age in Cyprus’, Cahier du Centre d’Etudes Chypriotes 37, 87–96.

Merrillees, R.S. & J. Winter 1972
‘Bronze Age trade between the Aegean and Egypt: Minoan and Mycenaean pottery from Egypt in the Brooklyn Museum’, Miscellania Wilbouriana 1, 101–33.

Michael, H.N. 1976

Michel, C. & P. Rocher 2000

Michel, C. 2002

Michel, C. 2007

Miller, J.L. 2007

‘Geochemistry of water and gas discharges from the Mt. Amiata silicic complex and surrounding areas (central Italy)’, Journal of Volcanology and Geothermal Research 79, 223–51.


Minoura, K., F. Imamura, T. Takahashi & N. Shuto 1997
‘Sequence of sedimentation processes caused by the 1992

Miron, R. 1990
Das ‘Schatzhaus’ im Palastbereich. Die Funde (Saarbrücker Beiträge zur Altertumskunde 46 = Kamid el-Loz. 10), Bonn.

Mitrousis, A. 2008

Mizrachy, Y. 2002

Mlinar, C. 2002

Monges Soares, A.M. 1993
14C content of marine shells: evidence for variability in coastal upwelling off Portugal during the Holocene’, in The international symposium on applications of isotope techniques in studying past and current environmental changes in the hydrosphere and the atmosphere, Vienna, Austria, 04/19223/93, IAEA-SM-329/49, Vienna, 471–85.

Montet, P. 1921–22

Montet, P. 1928

Montet, P. 1929

Moody, J. 2005
‘Unravelling the threads: climate changes in the Late Bronze III Aegean’, in Ariadne’s threads: Connections between Crete and the Greek Mainland in Late Minoan III (LM IIIA2 to LM IIIIC), A.-L. D’Agata & J. Moody (eds.) (Tripodes 3, Scuola Archeologica Italiana di Atene), Athens, 443–70.

Moody, J., O. Rackham, & G. Rapp 1996

Moore, J. G. 1966

Moran, W. L. 1992
The Amarna letters, Baltimore.

Morgan, L. (ed.) 2005
Aegean wall paintings: a tribute to Mark Cameron (British School at Athens Studies 13), London.

Morgan, L. 2006
‘Art and international relations: the hunt frieze at Tell el-Dab’a’, in Czerny et al. 2006, 249–58.

‘Carbon degassing from the lithosphere’, Global and Planetary Change 33, 185–203.

Mountjoy, P.A. 1983

Mountjoy, P.A. 1986
Mycenaean decorated pottery: a guide to identification (Studies in Mediterranean Archaeology 73), Gothenburg.

Mountjoy, P.A. 1999
Regional Mycenaean decorated pottery, Rahden.

Mountjoy, P. A. 2004

Müller, V. 2007
‘Wie gut fixiert ist die Chronologie des Neuen Reiches wirklich?’, Ägypten & Levante 16, 203–30.

Müller, W. 1997

Murray, J.B., H. Rymer, & C.A. Locke 2000
‘Ground deformation, gravity, and magnetics,’ in Sigurdsson 2000, 1121–63.

‘Changes in deep-water formation during the Younger Dryas cold period inferred from a comparison of 10Be and 14C records’, Nature 408, 567–70.

‘Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records’, Earth and Planetary Science Letters 219, 325–40.

Nafplioti, A. 2008
‘“Mycenaean” political domination of Knossos following the Late Minoan IB destructions on Crete: negative evidence from strontium isotope ratio analysis (87Sr/86Sr)’, Journal of Archaeological Science 35: 2307–17.

Newhall, C. G. & S. Self 1982
‘The volcanic explosivity index (VEI): an estimate of explosive


Niemeier, W.-D. 1980a ‘New archaeological evidence for a 17th century date of the “Minoan Eruption” from Israel (Tel Kabri western Galilee)’, in Hardy & Renfrew 1990, 120–6.


Oren, E.D. 2001 ‘Early White Slip pottery in


Papadopoulos, G.A. & B. J. Chalkis 1984 ‘Tsunamis observed in Greece and the surrounding area from antiquity up to the present times’, Marine Geology 56, 309–17


Peltz, C., P. Schmid & M. Bichler M. 1999 ‘INAA of Aegean pumices for


Pendlebury, J.D.S. 1939 The archaeology of Crete, London.


Perrota, A., & C. Scarpati 2002 ‘Volume partition between the Plinian and co-ignimbrite air fall deposits of the campanian ignimbrite eruption,’ Mineralogy and Petrology 79, 67–78.


Petrie, W.M.F. & G. Brunton 1924 Sedment I–II (British School of Archaeology in Egypt and Egyptian Research Account Twenty-seventh Year 1921), London.


Pulak, C. 2005a ‘Who were the Mycenaeans aboard the Uluburun ship?’, in Laffineur & Greco 2005, 295–310.


Rackham, O. 2003 The nature of Mediterranean Europe, New Haven.

Rackham, O. 2006 Woodlands, New York.


Rackham, O. & J. Moody 1997 The making of the Cretan landscape, Manchester.


Raymond, A. 2005b Miletus in the Middle Bronze Age and Minoan presence in the eastern Aegean, Ph.D. dissertation, University of Toronto, Toronto.


Redford, D.B. 1986 Pharaonic King-Lists, annals and day-books: a contribution to the study of the Egyptian sense of history, Mississauga, ON.


Reeves, C.N. 1990
Valley of the Kings. The decline of a royal necropolis, London.

Rehak, P. 1996


‘INTCAL04 terrestrial radiocarbon age calibration, 0–26 CAL KYR BP’, Radiocarbon 46, 1029–58.

Reimer, P. J., & G. McCormac 2002

Reiner, E. & D. Pingree 1975
Enuma Anu Enlil Tablet 63: the Venus Tablet of Ammissaduqa, Malibu.

Renan, E. 1862
Catalogue des objets provenant de la mission de Phénicie, Paris.

Renfrew, C. 1973
Before civilization: the radiocarbon revolution and prehistoric Europe, London.

Robertson, B.M. 1999
The chronology of the Middle Bronze age tombs at Tell el-Ajjul, Ph.D. thesis, University of Utah.

Robock, A. & M.P. Free 1995

Robock, A. 2000

Roe, C.H. 2005

Hatshepsut from queen to pharaoh, New Haven-London.

Rogie, J.D. 1996

Rogie, J.D., D.M. Kerrick, G. Chiodini & F. Frondini 2000

Rutter, J.B. 2006

Rutter, J.B. forth.
‘Late Minoan IB at Kommos: a sequence of at least three distinct stages’, in Brogan & Hallager, forthcoming.

Roussakis, G., A.P. Karageorgos, & N. Conispoliatis 2004

Russell, J.K. & M.V. Stasiuk, M.V. 2000

Ryholm, K.S.B. 1997
The political situation in Egypt during the Second Intermediate Period c. 1800-1550 B.C. (Carsten Niebuhr Institute Publications 20), Copenhagen.

Ryholm, K.S.B. 2004
‘The Turin King-List,’ Ägypten & Levante 14, 135–55.

Sagan, C. 1979
Broca’s brain: reflections on the romance of science, New York.


Saltz, D.L. 1977
‘The chronology of the Middle Cypriote period’, Report
Department of Antiquities Cyprus
1977, 51–70.

Salzer, M.W. & M.K. Hughes 2007
‘Bristlecone pine tree rings and
volcanic eruptions over the last
5000 yr’, Quaternary Research 67,
57–68.

Sassmannshausen, L. 2006
‘Zur mesopotamischen Chrono-
logie des 2. Jahrtausends’,
Baghdader Mitteilungen 37, 157–77.

Scaillet, B., M. Pichavant & R.
Cioni, R. 2008
‘Upward migration of Vesuvius
magma chamber over the past
20,000 years’, Nature 455, 2186–
219.

Schaeffer, C.F.A. 1938
‘De quelques problemes que
soulèvent les découvertes de Tell

Schaeffer, C.F.A. 1939a
‘Les fouilles de Ras Shamra –
Ugarit’, Syria 20, 277–92.

Schaeffer, C.F.A. 1939b
Ugaritica I, Paris.

Schaeffer, C.F.A. 1948
Stratigraphie comparée, Oxford.

Schaeffer, C.F.A. 1949
Ugaritica II, Paris.

Schaeffer, C.F.A. 1962
Ugaritica IV, Paris.

Schneider, Th. 2008
‘Das Ende der Kurzen
Chronologie: eine kritische Bilanz
der Debatte’, Ägypten
& Levante 18, 273–313.

Scott, E.M. 2000
‘Bayesian methods: what can we
gain and at what cost?’, Radiocarbon
42, 181.

Seager, R.B. 1909
‘Excavations on the island of
Mochlos, Crete, in 1908’, American

Seager, R.B. 1910
Excavations on the island of Pseira,
Philadelphia.

Seal, Th. 2001
Review of Gasche et al. 1998,
Bibliotheca Orientalis 58, 163–73.

Self, S. & M. Rampino 1981
‘The 1883 eruption of Krakatau’,

Sewell, D. A. 2001
Earth, air, fire and water. An elemental
analysis of the Minoan eruption of the
Santorini volcano in the Late Bronze
Age, Ph.D. dissertation, University
of Reading, Reading.

Shaw, J.W. 1986
‘Excavations at Kommos (Crete)
during 1984–1985’, Hesperia 55,
219–69.

Shaw, J.W. & M.C. Shaw (eds.)
2006
Kommos V. The monumental Minoan
buildings at Kommos, Princeton.

Shaw, M. 1996
‘The bull-leaping fresco from
below the Ramp House at
Mycena: a study in iconography
and artistic transmission’, Annual
of the British School at Athens 91,
167–90.

Shaw, M.C. 1998
‘The painted plaster reliefs from
Pseira,’ in Betancourt & Davaras
1998a, 55–76.

Shaw, M.C. 1998
‘The bull-leaping fresco from
below the Ramp House at
Mycena: a study in iconography
and artistic transmission’, Annual
of the British School at Athens 91,
167–90.

Sigurdsson, H. (ed.) 2000
Encyclopedia of volcanoes, New York.

Sigurdsson, H., S. Carey, M.
Alexandri, G. Vougiaoulakakis, K.
Croft, C. Roman, D. Sakellariou,
C. Anagnostou, G. Rousakis, C.
Ioakim, A. Gogou, D. Ballas, T.
Misaridis & P. Nomikou, 2006
‘Marine investigations of Greece’s
Santorini volcanic field,’ Eos:
Transactions of the American
Geophysical Union 87(34), 337–48.

Siklósy, Z., A. Demény, T.W.
Vennemann, S. Pilet, J. Kramers,
S. Leél-Össy, M. Bondár, C.-C.
Chuan-Chou Shen & E. Hegner
2009
‘Bronze Age volcanic event
recorded in stalagmites by
combined isotope and trace
element studies’, Rapid Communica-
tions in Mass Spectrometry 23,
801–8.

Simkin, T. & R.S. Fiske 1983
Krakatau 1883: the volcanic eruption
and its effects, Washington, DC.

Simkin, T. & L. Siebert 2000
‘Earth’s volcanoes and eruptions:
an overview,’ in Sigurdsson 2000,
249–62.

Simkin, T., L. Siebert, L.
McClelland, D. Bridge, C.
Newhall & J. H. Latter 1981
Volcanoes of the world: a regional
directory, gazetteer, and chronology
of volcanism during the last 10,000
years, Stroudsburg PA.
Simkin, T. & L. Siebert 1994
*Volcanoes of the World*, Tuscon.

Simpson, W. K. (ed.) 1972

Skok, J., W. Chorney & W.S. Broecker 1962

Soles, J.S. 1983

Soles J.S. 1991

Soles, J.S. 2003

Soles, J.S. 2004a

Soles, J.S. 2004b

Soles J. S. & C. Davaras 1990

Soles, J.S. & C. Davaras 1992

Soles, J.S. & C. Davaras 1994

Soles, J.S. & C. Davaras 1995

Soles, J.S. & C. Davaras 1996

Soles, J.S. & C. Davaras 2000

‘Tephra samples from Mochlos and their chronological implications for Neopalatial Crete’, *Archaeometry* 37, 385–93.

Soles, J.S. et al. 2004
*Mochlos IC. Period III. Neopalatial settlement on the coast: The Artisans’ Quarter and the farmhouse at Chalinomouri, the small finds*, Philadelphia.

Sørensen, A.H. 2008

Sørensen, A.H. forth.

Spalinger, A. J. 1993
*Revolutions in time: studies in Ancient Egyptian calendrics*, San Antonio.

Spalinger, A. J. 2006
‘Covetous eyes south: the background to Egypt’s domination over Nubia by the reign of Thutmose III’, in Cline & O’Connor 2006, 344–69.

Sparks, R.S.J. 1978

Sparks, R.S.J. 1986

Sparks, R.T. 2007
*Stone vessels in the Levant*, Leeds.

Sparks, R.S.J. & C.J.N. Wilson, 1990

Splittstoesser, W.E. 1966

Stager, L.E. 2002
Stager, L.E., J.D. Schloen, D.M. Master 2008

Stamatopoulos, A. & P. Kotzias 1990

Stampolidis, N. Chr. & V. Karageorghis (eds.) 2003

Stanley, D.J. & H. Sheng 1986

Steinhauser, G., J. H. Sterba, M. Bichler, & H. Huber 2006
‘Neutron activation analysis of Mediterranean volcanic rocks: an analytical database for archaeological stratigraphy’, Applied Geochemistry 21, 1362–75.

Sterba, J.H., K.P. Foster, G. Steinhauser & M. Bichler 2009

Stewart, J. 1962
‘The tomb of the Seafarer at Karmi in Cyprus’, Opuscula Atheniensia 4, 197–204.

Stewart, J. 1974
Tell el-’Ajjul: the Middle Bronze remains (Studies in Mediterranean Archaeology 38), Gothenburg.

Stiros, S.C. 2001

Stix, J. & H. Gaonac’h 2000

Stolwijk, J.A.J. & K.V. Thimann 1957

Switsur, V.R. 1984

Tait, J. (ed.) 2003
“Never had the like occurred”: Egypt’s view of its past, London.

Tartaron, T. F. 2008

Taylor, J.H. 1989
Egyptian coffins (Shire Egyptology 11), Aylesbury.

ten Veen, J.H. & K.L. Kleinspehn 2003

Teskey, R.O. & M.A. McGuire 2007


Trevisanato S.I. 2006 ‘Treatments for burns in the London Medical Papyrus show the first seven biblical plagues of Egypt are coherent with Santorini’s volcanic fallout’, *Medical Hypotheses* 66 (1), 193–6.


Vespa, M., J. Keller & R. Gertisser 2006 ‘Interplinian explosive activity of Santorini volcano (Greece) during the past 150,000 years,’ *Journal of Volcanology and Geothermal Research* 153, 262–86.


Quarry, Thera’, in Doumas 1978, 203–15


Warren, P.M. & V. Hankey 1989 *Aegean Bronze Age chronology*, Bristol.


Wiener, M.H. 2003b 'The absolute chronology of Late Helladic III A2 revisited', *Annual


Wijngaarden, G.J. 2003 Use and appreciation of Mycenaean pottery in the Levant, Cyprus and Italy (ca. 1600–1200 BC), Amsterdam.


Williams, H. 1942 The geology of Crater Lake National Park, Oregon, with a reconnaissance of the cascade range southward to Mt. Shasta (Carnegie Institute Publication 540), Washington, D.C.


